

Through Regd. AD

MIN / 2021 - 210296

01st Dec, 2021

Τo,

Director

Ministry of Environment & Forests

Regional Office, Western Region

Kendriya Paryavaran Bhavan

Link Road No. 3

E - 5, Ravishankar Nagar

Bhopal - 462 016

Sub: Compliance report of additional limestone deposit over 66.434 ha area at village Manakahari, Tehsil Rampur Baghelan, Dist. Satna of M/s Prism Johnson Ltd.

Ref: Your letter no. J - 11015 / 8 / 2000 - I A. II (M) dated 14.2.2001.

Dear Sir,

We are sending enclosed herewith the six monthly compliance report (Period of April-21 to September-2021) of the environmental clearance granted for additional limestone deposit at village Manakahari, Tehsil Rampur Baghelan, Dist. Satna (M.P.) vide the letter no. J-11015/8/2000-IA. II (M) dated 14.2.2001 along with necessary enclosures.

We hope you will find the same in order.

Thanking you.

Yours faithfully, For, Prism Johnson Ltd.

She M.

PRISM

PRISM

Mines Manager Prism Cement Limestone Mines

PRISM JOHNSON LIMITED

(FORMERLY PRISM CEMENT LIMITED) (Cement Division - Unit II)

Works: Village Mankahari, P.O.-Bathia, Dist. Satna - 485 111 (M.P.) India T: +91-07672-275301 / 302600 Corres. Add.: 'Rajdeep', Rewa Road, Satna - 485 001 (M.P.) India. T: +91-07672-402726 Registered Office: Prism Johnson Limited, 305, Laxmi Niwas Apartments, Ameerpet. Hyderabad - 500 016, India. w: www.prismjohnson.in, www.cement.prismjohnson.in, E: info@prismjohnson.in

CIN: L26942TG1992PLC014033

COMPLIANCE OF CONDITIONS AS STIPULATED BY MoEF VIDE LETTER NO. J -11015 / 8 / 2000 - I A. II (M) DATED 14.2.2001 FOR ADDITIONAL LIMESTONE DEPOSIT OVER 66.434 HECT. AREA IN VILLAGE MANAKAHARI, TEHSIL RAMPUR BAGHELAN, DIST. SATNA (M.P.)

1. The environmental clearance would be applicable **66.434 hect**. lease area

A. Specific Conditions :

- (i) Mining should be carried out 500 m away ⇒ No from the Rewa Satna railway track. with
- (ii) The topsoil should be stacked properly with adequate measures at earmarked site. It should be used for reclamation and rehabilitation of mined out area.
- OB dumps should be stacked at earmarked dump site(s) only on temporary basis.
 Concurrent back – filling and reclamation should be carried out from the 3rd year of operations.
- (iv) A green belt of adequate width by planting the native plant species all around the ML area, roads, OB dump sites etc. should be raised in consultation with local DFO / Agriculture Department.

- No mining activities are carried out within 500 m vicinity of Rewa – Satna Railway track.
- Topsoil is being used for reclamation and rehabilitation of the mined out area. No outside stacking is being done.
- Reclamation of the mined out area has been started from 3rd year of operations as stipulated in the condition. 12.83 Ha. of mined out area has been reclaimed up to September 2021

No waste rock generated from April 2021 to September 2021 to be used in backfilling of the mined out area.

⇒ Green belt of adequate width is being developed. Year wise details of the plantation carried out so far are given in Annexure I.

A rose garden has been developed in the colony.

A nursery has also been developed where various types of saplings are prepared for plantation.

Saplings planted April 2021 to September 2021 were 500 and cumulative plantation till September 2021 is 25056.

 (v) Drill should be operated with dust extractors ⇒ Dri or only wet drilling should be adopted.

 ⇒ Drill machine IBH 10 of Atlas Copco is in operation. This machine is fitted with water sprinkler that settles the dust generated at the time of drilling and thus prevents it from going into the atmosphere.

- (vi) Controlled blasting should be carried out.
- (vii) Check dam and siltation ponds of ⇒ appropriate size should be constructed to arrest silt and sediments flow from OB and mineral dumps. The water so collected should be utilized for watering mine area, roads, greenbelt, etc. The drains should be regularly desilted and maintained properly.
- (viii) Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring should be done four times a year- premonsoon April / May, Monsoon (August), Post-monsoon (November) and winter (January). Data thus collected should be sent at regular intervals to MoEF.
- (ix) Crusher should be installed and operated ⇒
 with adequate capacity de-dusting arrangement
- (x) A detailed mine decommissioning plan ⇒ should be submitted to MoEF 5 year in advance for approval.

B. GENERAL CONDITIONS

- No change on mining technology and scope of working should be made without prior approval of the Ministry of Environment and Forests.
- No change in the calendar plan including excavation, quantum of limestone, waste / OB dumps should be made.
- (iii) Four ambient air quality monitoring stations should be established in the core zone as well as buffer zone for SPM, RPM, SO₂, NO_x and CO monitoring. Location of the ambient air quality stations should be decided based on the meteorological data, topographical features and environmentally sensitive targets in consultation with the State Pollution Control Board.

- ⇒ Controlled blasting is being practiced.
- Garland drain and siltation pond have been constructed to arrest the silt and sediment flow.
- ⇒ Being done.

Ground water level monitoring data of post -monsoon (Month wise), have been given in **Annexure II.**

Quality monitoring report of the ground water of the wells/bore holes is given in **Annexure III.**

Crusher has already been installed with adequate capacity of de-dusting arrangement like bag - filters. Continuous water sprinkling arrangement at crusher hopper has also been made for suppressing the dust generated during unloading of the mineral in crusher hopper.

- Will be submitted.
- \Rightarrow No changes have been made.
- \Rightarrow No changes have been made.
- Four different monitoring stations are established and air quality is monitored twice in a month.

- (iv) Data of ambient air quality should be regularly submitted to the Ministry including its Regional Office at Bhopal and the State Pollution Control Board / Central Pollution Control Board once in six months.
- (v) Adequate measures for control of fugitive emissions should be taken during drilling and blasting operations, loading and transportation of minerals etc.
- Being done regularly and submitted to the ministry and other government agencies. Ambient air quality monitoring results from April 2021 to September 2021 have been given in Annexure IV.
- Adequate measures for control of fugitive emission are being taken during drilling and blasting operations, loading and transportation of mineral etc.
 - Drill machine is operated with inbuilt dust extractor, which arrests the dust generated during the drilling operation.
 - Water sprinkling is done on the blasted muck after blasting to reduce the dust generation during the loading operation.
 - Water spraying is continuously done on haul roads.
- ⇒ Being taken.

Noise monitoring reports from April 2021 to September 2021 have been given in **Annexure –V.**

Personal protective equipments are being provided to all personnel working in dusty area at regular intervals.

Time to time, training and information on health and safety aspects are being imparted by the HRD Deptt. as well as at vocational training centre of the Deptt.

All employees undergo periodical medical examination under Mines Act at regular intervals.

- (viii) The funds earmarked for environmental protection measures should be kept in separate account and not diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment & Forests.
- ⇔ Envoirmental Expenditure of 2021-22 (till September)

- (vi) Adequate measures should be taken for control of noise levels below 85 dB in the work environment.
- (vii) Personnel working in dusty areas should ⇒ wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.

Occupational health surveillance programme of the workers should be undertaken periodically to observe any contractions due to exposures to dust and take corrective measures, if needed.

	Particulars	Expe Ir
1	Air Pollution Monitoring	
2	Noise Monitoring	
3	Plantation	
4	Dust Control Messure	

- (ix) The Regional Office of this Ministry located at Bhopal shall monitor compliance of the stipulated environmental safeguards. The project authority should send one set of EIA / EMP Report and Mining Plan to them and extend full co operation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring report.
- (x) The Project authority should inform to the Regional Office located at Bhopal as well as to the Ministry of Environment & Forests regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.
- (xi) A copy of the clearance letter will be marked to concerned Panchayat / Local NGO, if any, from whom any suggestion / representation has been received while processing the proposal.
- (xii) State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industry Centre and Collector's Office / Tehsildar's Office for 30 days.
- (xiii) The Project authority should advertise at least in two local newspapers widely circulated around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and the copy of the clearance letter is available with the state Pollution Control Board and may also be seen at the web site of the Ministry of Environment and Forests at http://envfor.nic.in.

Photocopies of Rapid EIA – EMP Report and Mining Plan have already been sent.

Co-operation is being extended to the inspecting Officials.

Agreed

Agreed

⇒

The advertisement was published in two of the local newspapers viz. 'Dainik Bhaskar' and 'Naw Swadesh' which was earlier informed vide our letter no. MIN / 104 / 5820A dated 27.3.02.

	Year-wise	plantation of 66.4	34 Ha ML
S. No.	Year	Number of Plants planted	Greenbelt/ Colony/ CSR
1	2001-02	1132	0
2	2002-03	1937	449
3	2003-04	3522	4387
4	2004-05	982	571
5	2005-06	739	0
6	2006-07	1300	0
7	2007-08	720	600
8	2008-09	1104	4000
9	2009-10	1000	2330
10	2010-11	1640	7258
11	2011-12	1400	3698
12	2012-13	800	3100
13	2013-14	680	2740
14	2014-15	1600	2566
15	2015-16	1000	3200
16	2016-17	1000	37876
17	2017-18	1000	10000
18	2018-19	1000	15000
19	2019-20	1000	43364
20	2020-21	1000	35944
21	2021-22	500	14468
	Total	25056	191551

Annexure 1

Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow - 226 024 Phone No. : 0522 - 4079201/2746282

E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1444/08/21 TEST REPORT ISSUE DATE: 03.09.2021

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	;	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	;	21.08.2021
Date of Receiving	:	24.08.2021
Date of Analysis	:	25.08.2021 to 02.09.2021
Source of Sample		Mankahari Village – Hand Pump
Sample 1D Code	:	ELW-14723

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STAND 10500:1991(1	
de la					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APIIA, 23rd Ed. 2017, 2130-A+B	1.06	1 - 100	1.0	5.0
5.	рН	APHA, 23'd Ed. 2017, 4500H+ A+B	7.38	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	664.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	236.0	5-1500	200	600
8.	Total Hardness as CaCO3 (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	272.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	64.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APIIA, 23rd Ed. 2017, 3500 Mg A+B	27.21	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	48.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23" Ed. 2017, 4500-C	0.40	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APIIA, 23rd Ed. 2017, 4500-SO42 E	96.50	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500-NO3 B	17.50	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BOL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 ^N Ed. 2017, 3111 A+B	BDL	0.02-5	0,02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	1-100.0	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H2S (mg/l)	APIIA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23rd Ed. 2017, 4500 - 1B	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.19	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Stepatony Ecomen Laborethe Report... Second Floor Hall, House No. 8-1/8, Sector-H. Aliganj, Lucknow-226024

lanager

Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow - 226 024

Phone No. : 0522 - 4079201/2746282 E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1444/08/21 TEST REPORT ISSUE DATE: 03.09.2021

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	21.08.2021
Date of Receiving	:	24.08.2021
Date of Analysis	:	25.08.2021 to 02.09.2021
Source of Sample	:	PCL Colony Supply Water - Bore Well
Sample ID Code	:	ELW-14724

SL No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Realf:2012)		
1					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APIIA, 23rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.20	1 - 100	1.0	5.0	
5.	рН	APHA, 23rd Ed. 2017, 4500H+ A+B	7.28	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	638.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017, 2320 A+ B	188.0	5-1500	200	600	
8.	Total Hardness as CaCO2 (111g/l)	APHA, 23rd Ed. 2017, 2340 A+C	260.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	70,40	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	20.41	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	52.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500-C	0.35	0.05-10	1.0	1.5	
13.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017, 4500-SO42 E	88.0	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500-NO3 B	16.20	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APIIA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chroinium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-CI B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	lodide as I (mg/l)	API1A, 23rd Ed. 2017, 4500 - 1B	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.21	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APIIA, 23rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested.

BDL = Below Detection Limit

Analyst

End of the Report... Authorize pignatory Ecomen Laborator Second Floor Hall, House No. 8-1/8, Sector-H, Aliganj, Lucknow-226024

Manager

Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow - 226 024 Phone No. : 0522 - 4079201/2746282

E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1444/08/21 TEST REPORT ISSUE DATE: 03.09.2021

TEST REPORT OF DRINKING WATER*

Name of the Company : M/s. Prism Johnson Ltd. Address of the Company : Village Mankahari, Tehsil Rampur Baghelan Distt.Satna (M.P.) Sampling Method : APHA/ IS: 3025 Sample Collected by : Mr.Maan Singh Sample Quantity : As per requirement. Date of Sampling : 21.08.2021 **Date of Receiving** : 24.08.2021 Date of Analysis : 25.08.2021 to 02.09.2021 Source of Sample : Plant Site - Bore Well Sample ID Code : ELW-14726

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
				-	Desirable	Permissible	
1.	Colour (Hazen unit)	АРНА, 23 rd Ed. 2017, 2120 В	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.06	1 - 100	1.0	5.0	
5.	pH	APHA, 23rd Ed. 2017, 4500H+ A+B	7.45	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	345.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017, 2320 A+ B	168.0	5-1500	200	600	
8.	Total Hardness as CaCO3 (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	212.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	59.20	5-1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	15.55	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 CI A+B	56.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23" Ed. 2017, 4500-C	0.34	0.05-10	1.0	1.5	
13.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017, 4500-SO42. E	82.50	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500-NO3- B	15.45	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15	
17.	Lead as Pb (mg/1)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relay	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BD1.	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26,	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-CI B	RDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	lodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4560 - 1B	BDL.	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.16	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APIIA, 23rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Ausent	
31.	E.coli (Nos/100)	APIIA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested.

BDL = Below Detection Limit

Analyst

... End of the Report ... Author natory Ecomen Labo Second Floor Hall, House No. 8-1/8, Sector-H, Aliganj, Lucknow-226024

y Manager

ecoMen

Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow - 226 024 Phone No. : 0522 - 4079201/2746282

E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/23 REPORT NO: ECO LAB/Piezo/GW/08/21 TEST REPORT ISSUE DATE: 30.08.2021

REPORT OF WATER LEVEL MEASUREMENT

Name of the Customer Address of the Customer	 M/s. Prism Johnson Ltd. Village - Mankahari, Tehsil - Rampur Baghelan Distt.Satna (M.P.)
Measurement by	: Mr. Maan Singh
Date of Measurement	: August 20th, 2021

SI. No.	Piezometer Name.	Water Level (meter)
1.	Colony Gate	6.14
2.	Behind B Block	2.93
3.	Behind C Block	1.06
4.	Auto Work Shop	9.70
5.	In Front Den	2.10
6.	Rose Garden near boundary	5.90
7.	Rose Garden	4.28
8.	Western Block Mines	9.50
9.	Near New Magzine Mines	10.60
10.	Mankahari Mines	13.50
11.	Mines near Ramprasan	11.50
12.	Side Office Mines	Block

Analyst

End of the Report... Authorized Signatory Ecomen Laboratories Pvt. Ltd. Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow-226024

Manager

AIR QUALITY MONITORING REPORT FOR MINES MONTH - SEPTEMBER YEAR-2021

l

	PRISM JOHNSON LTD	PRIMING CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA	POST BATHIA	UST : SATNA (M. P.)- 485111	: Swati Vaish			: 8X3=24 IIIs.	: LOCATION (1) - SW (BP No. 18)	LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area 1 OCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouri Village		
I MAME & ADDRESS OF FACTORY					2 NAME OF PERSON PREPARED THE REPORT	3 AMBIENT AIR QUALITY MONITORING	L. UUKATION	2. DISTANCE FROM FACTORY			2 WIND DIRECTION	

DIRECTION

MENTIONED IN THE TABLE

,

3

Dy. Manager- Environment Prism Johnson I td. Satna (M.P.) Swati Vaish

Asst. Vice President Prism Johnson 1 td. Satna (M.P.) Manoj Kumar Kashyap

SPORT FO MR-2021
VIR QUALLTY MONTORING REPORT FOR MINES MONTH - AUGUST YEAR-2021

1

1

AUGUST YEAR-2021	PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111	: Swati Vaish	8X3=24 IIrs, LOCATION (1) - SW (BP No, 18) LOCATION (2) - Near Western side MI housdoor (20)	LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village	MENTIONED IN THE TABLE
I NAME & ADDRESS OF FACTORY	2 NAME OF PERSON PREPARED THE REPORT	3 AMBIENT AIR QUALITY MONITORING 1. DURATION 2 DISTANCE DECEMBER 2 DISTANCE DECEMBE	- USTANCE FROM FACTORY	3. WIND DIRECTION	

	nu m
	Wind Direction From S
	CO CO BDL BDL BDL
	X X C 2 B B C 2 B C 2 B B C 2 B C 2 B B C 2 B C
	(4) NOX ug/M3 38.83 37.75
	cation SO2 35.35 36.45
	Loc M10 0.58 0.58 0.58
	225 P1 M3 ug 08 55
	CO PM2.5 PM10 2 13 ug/M3
	CO III BDI BDI
	() NOX NOX 35.05 33.71
	y/M3 1 5.1
	Locs H10 5 M3 ug 27 3
	5 PN 13 ug/ 6 49.
	PM12 26.4 25.0
	CO BDL BDL
	Location (1) Location (2) Location (2) Location (3) Location (4) NOX CO PM2.5 PM10 SO2 NOX SO2 NOX SO2 NOX SO2 NOX SO2
	Location (2) 10 SO2 NO 43 ug/M3 ug/M 25 38.19 41.1 5 37.56 42.0
	Loca M3 ug 25 33 05 3
	5 PN 13 ug/ 56.56
	PM2 ug/N 29.7
	CO BDL BDL BDL
	VOX 94.94 1.68
	100 (1) 22 7 22 7 23 4 68 4
	Location (1) 0 SO2 3 ug/M3 40.5 4 3 41.68
	L 1PM10 102/13 59.3 59.43
	PM2.5 PM10 S02 N ug/M3
	21 21 21 21 ectable
	Date 08.08.21 22.08.21 w Detect
-	No Date PM2.5 No Date PM2.5 1 08.08.21 30.27 2 22.08.21 31.58 2DL - Below Detectable Limit
	2 BDL

Sumitabh Dwivedi UHE

Sr. Manager- Environment Prism Johnson I td. Satna (M.P.)

Manoj Kumar Kashyap Asst. Vice President Prism Johnson I td. Satna (M.P.)

AINES	
FOR	_
AIR QUALITY MONITORING REPORT FOR MINES	MONTH - JULY YEAR-2021
AIR QUAL	

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHA DISTT : SATNA (M.P.)- 485111	Swati Vaish	8X3=24 IIrs. LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Ilinouti Village MENTIONED IN THE TABLE
I NAME & ADDRESS OF FACTORY	2 NAME OF PERSON PREPARED THE REPORT	 3 AMBIENT AIR QUALITY MONITORING 1. DURATION 2. DISTANCE FROM FACTORY 3. WIND DIRECTION

CM2 Sumtabh Dwivedi Manager-Environment Prism Johnson Ltd. Satna (M.P.)

Manoj Kumar Kashyap Sr. General Manager Prism Johnson L.td. Satna (M.P.)

FOR MINES	
AIR QUALITY MONITORING REPORT FOR MINE	MONTH - JUNE YEAR-2021

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111	Sumitabh Dwivedi	8X3=24 Hrs LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village	MENTIONED IN THE TABLE
I NAME & ADDRESS OF FACTORY	2 NAME OF PERSON PREPARED THE REPORT	3 AIMBIENT AIR QUALITY MONITORING 1. DURATION 2. DISTANCE FROM FACTORY	3. WIND DIRECTION

15			Lo	ocation ([]			Lou	Location (2)	(;			J.00	Location (3)	(Loc	Location (4)	(Wind
0N	Date		PM2.5 PM10 S02	S02	2 NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 PM10 SO2 NOX CO D	CO	PM2.5	PM10	S02	XON	CO	PM2.5	PM10	502	XON	CO	PM2 5	0IM	S02	XON	00	Direction
-		-	ug/M3 ug/M3 ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3 1	Ig/M3	ug/M3	ug/M3 t	ug/M3 (1 EM/Br	ig/M3	ug/M3	ig/M3 u	g/M3 L	(g/M3)	ug/M3	From
-	07.06.21 31.78 55.47 51.04	31.78	55 47	51 04	55.73	BDL	30.83	66.31	53.03	53.39	BDI.	29.41	53.58	40.5	41.18	BDL	30.09	55.13 4	2.53	12 47	BDL	SW
	21 06 21 28 03 62 17 42 53	28 03	62.17	42.53	45.6	BDL	BDL 27.27 53.79 43.74 43.14 BDL 25.87 50.09 35.35 37.21 BDL 27.34 51.14 39.49 39.29	53 79	43.74	43.14	BDL	25.87	50.09	35.35	37.21	BDL	2734	51.14	9.49	39.29	BDL	SW

Sumitabh Dwivedi

Ø

Sumitabh Dwivedi Manager- Environment Prism Johnson Ltd. Satna (M.P.)

Manoj Kumar Kashyap Sr. General Manager Prism Johnson Ltd. Satna (N.P.)

AIR QUALITY MONITORING REPORT FOR MINES	MONTH - MAY YEAR-2021
AIR QUA	

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111	Sumitabh Dwivedi	8X3=24 IIrs. LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of MIL atrea LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Ilinouti Village	MENTIONED IN THE TABLE
	•••	·· · ·	#1.8
I NAME & ADDRESS OF FACTORY	2 NAME OF PERSON PREPARED THE REPORT	 3. AMBIENT AIR QUALITY MONITORING 1. DURATION 2. DISTANCE FROM FACTORY 	3. WIND DIRECTION

7			Lo	ocation (1	()			l.o	ocation (2	(j			l,o	Location (3)	(Lo	ocation (4)	(Wind
No.	Date	PM2.5	PM10	S02	PM2.5 PM10 S02 NOX CO		PM2.5	PM10	S02	NOX	CO	PM2.5	PM10	S02	NOX	CO	PM2.5	PM10	SO2	NOX	CO	Direction
		ug/M3	ug/M3	ug/M3	ig/M3 ug/M3 ug/M3 ug/M3 ug/M3	ug/M3	s ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	ug/M3	From
-	09.05.21	33.26	33.26 70.88 48.61 53.93	48.61	53.93	BDL	30.7	62.93	44.19	50.01	BDL.	26.01	54.1	38.19	36.4	BDL	27.34	56.93	40.5	40.45	BDL	SE
~1	24.05.21 31.64 62.86 43.2 48.54	31.64	62.86	43.2	48.54	BDL	28.54	58.07	41.98	45.84	BDL	25.38	56.16	34.72	35.59	BDL	27.11	60.79	36.45	38.43	BDL.	M

Sumitabh Dwivedi Manager-Environment Prism Johnson Ltd. Satna (M.P.)

Manoj Kumar Kashyap Sr. General Manager Prism Johnson Ltd. Satma (M.P.)

	PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES	VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA		: Sumitabh Dwivedi		: 8X3=24 Hrs.	: LOCATION (1) - SW (BP No. 18)	LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area	LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village	MENTIONED IN THE TABLE
I NAME & ADDRESS OF FACTORY			2 NAME OF PERSON PREPARED THE REPORT		3 AMBIENT AIR QUALITY MONITORING 1. DURATION	2. DISTANCE FROM FACTORY				3. WIND DIRECTION

S1 Location (1) Location (2) Location (2) Location (3) Location (3) Location (4) No. Date PM2.5 PM10 SO2 NOX CO P 20.04.21 31.41 70.74 33.42 37.21 BDL 34.44 63.25 31.24 35.3 59.66 26.51 32.36 BDL 23.01 33.83 BDL 20.04.21 33.83 BDL 2
Date PM2.5 PM10 SO2 NOX o 05.04.21 31.41 70.74 33.42 37.21 B 20.04.21 31.41 70.74 33.42 37.21 B
Location (1) PM10 SO2 NOX 0 ug/M3 ug/M3 ug/M3 ug/M3 ug 70.74 33.42 37.21 B 68.16 34.02 38.83 B
SI Date P No. Date P 1 05.04.21 3 2 20.04.21 3

ectable Limit

Sumitabh Dwivedi Manager- Environment Prism Johnson Ltd. Satna (M.P.)

Manoj Kumar Kashyap Sr. General Manager Prism Johnson Ltd. Satna (M.P.)

X

.

0)

AMBIENT NOISE MONITORING REPORT

MONTH - APRIL 2021

: **PRISM JOHNSON LTD. Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

- 2. Name of person prepared the report : Sumitable Dwivedi
- 3. Details of noise monitoring

Name and address of Factory

1.

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	19.04.2021	61.57	54.85
2	Near Western side ML boundary (Pillar No. 14) of ML area	19.04.2021	58.4	53.4
3	Mankahari Village	20.04.2021	53.2	49.25
4	Hinouti village	20.04.2021	56.97	51.5

3-

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH – MAY 2021

Name and address of Factory	: PRISM JOHNSON LTD.
	Prism Cement Limestone Mines
	Village- Mankahari, Hinauti & Sijahata
	Post - Bathia
	Distt - Satna (M.P)- 485111

:-

2. Name of person prepared the report : Sumitabh Dwivedi

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	14.05.2021	63.15	55.52
2	Near Western side ML boundary (Pillar No. 14) of ML area	14.05.2021	61.05	54.8
3	Mankahari Village	14.05.2021	54.85	48.87
4	Hinouti village	14.05.2021	57.0	50.62

3. Details of noise monitoring

1.

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH – JUNE 2021

Name and address of Factory PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

:-

2. Name of person prepared the report : Sumitabh Dwivedi

S. No	Locations .	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	20.06.21	61.62	54.82
2	Near Western side ML boundary (Pillar No. 14) of ML area	20.06.21	59.67	53.87
3	Mankahari Village	20.06.21	54.97	46.35
4	Hinouti village	20.06.21	56.5	48.55

3. Details of noise monitoring

1.

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH - JULY 2021

 Name and address of Factory
 PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report : Swati Vaish

3. Details of noise monitoring :-

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	14.07.2021	60.67	53.90
2	Near Western side ML boundary (Pillar No. 14) of ML area	14.07.2021	59.05	53.17
3	Mankahari Village	14.07.2021	53.7	48.22
4	Hinouti village	14.07.2021	55.17	48.90

1

1

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

AMBIENT NOISE MONITORING REPORT

MONTH - AUGUST 2021

1. Name and address of Factory

: PRISM JOHNSON LTD. **Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

- 2. Name of person prepared the report Swati Vaish :
- :-S. No Locations Date of Noise level monitoring in dB(A) (Day Time) 1 SW (BP No. 18) 18.08.2021 60.6 2 Near Western side ML boundary 18.08.2021 59.12 (Pillar No. 14) of ML area

18.08.2021

18.08.2021

3. Details of noise monitoring

Sumitabh Dwivedi

3

4

Sr. Manager – Environment

Mankahari Village

Hinouti village

54.32

55.92

Manoj Kumar Kashyap Asst. Vice President

Noise

Level in

dB(A)(Night Time)

53.12

52.67

47.3

49.72

AMBIENT NOISE MONITORING REPORT

MONTH – SEPTEMBER 2021

1. Name and address of Factory

: **PRISM JOHNSON LTD. Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

Swati Vaish

2. Name of person prepared the report

3. Details of noise monitoring :-

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	20.09.2021	60.8	52.25
2	Near Western side ML boundary (Pillar No. 14) of ML area	20.09.2021	58.17	51.52
3	Mankahari Village	20.09.2021	54.87	48.45
4	Hinouti village	20.09.2021	56.5	49.92

li a

Swati Vaish Dy. Manager – Environment

Manoj Kumar Kashyap Asst. Vice President